If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2+96t+48=0
a = 16; b = 96; c = +48;
Δ = b2-4ac
Δ = 962-4·16·48
Δ = 6144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6144}=\sqrt{1024*6}=\sqrt{1024}*\sqrt{6}=32\sqrt{6}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(96)-32\sqrt{6}}{2*16}=\frac{-96-32\sqrt{6}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(96)+32\sqrt{6}}{2*16}=\frac{-96+32\sqrt{6}}{32} $
| 1/3x-8=x+4 | | (3x-6)(-2x-14)=2x+17 | | (x-3)^2=0 | | 18=-6/11·h | | -10x+16+4x=-5+36-6x | | (3x+2)(x+5)=120 | | -10/21·c=-15/28 | | 2n^2(n^2+5)=45+9n^2 | | 0=-16t^2+96t+48 | | 18x^2+31x-49=0 | | 2/3=4a/6 | | 3x+3=14-6x | | 16-3p=2÷3p+5 | | m+13=3 | | -8+7x+5x=19-5x+20 | | -2x-5+x=4x-3-3x | | -5(-4y+7)-y=7(y-4)-5 | | X^3-8x^2+13x=0 | | -6+4x=2x+4-3x-5 | | 13x+24x-32x=144 | | 1/3x=56 | | 17=4x-3-6x | | 6(x-5)+9=16 | | 1/3x-15=51 | | 5/8+k=4/7k-3/8 | | -y+77=228 | | 4n+8=n+3 | | 32=4t-3t+7t | | 5/2r+7-2=5 | | 27+25=5n+7+6n-2n | | 2(0.25-0.75y)-y=-3 | | 5x+3=3x+49 |